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Abstract
In this paper, we propose a general way of computing expectation values in
the zero-range process (ZRP), using an exact form of the partition function.
As an example, we provide the fundamental diagram (the flux–density plot)
of the asymmetric exclusion process corresponding to the ZRP. We express
the partition function for the steady state by the Lauricella hypergeometric
function, and thereby have two exact fundamental diagrams each for the
parallel and random sequential update rules. Meanwhile, from the viewpoint
of equilibrium statistical mechanics, we work within the canonical ensemble
but the result obtained is certainly in agreement with previous works done in
the grand-canonical ensemble.

PACS numbers: 02.50.−r, 02.50.Ey, 05.00.Oo

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The zero-range process (ZRP) is a stochastic model in which many indistinguishable particles
occupy sites on a lattice [1–3]. Each site of the lattice may contain an integer number
of particles and the particles hop to the next site with a probability which depends on the
number of particles at the departure site. In other words, each particle interacts with the
particles at the same site, i.e., they have a zero-range interaction. The hop probability is
totally asymmetric, i.e., particles can only move in the definite direction and hence the flow
of particles, even from the macroscopic viewpoint, never vanishes in general. The flow gives
rise to a contrasting density distribution of particles, and one may therefore regard the ZRP
as a typical nonequilibrium system [4, 5]. Since one can choose any function as the hop
probability function, the ZRP has been extensively studied and applied for a wide variety of
many-particle systems [6–8].
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Although there now exist a lot of generalized/extended versions of the ZRP [3, 5, 9],
in this paper we focus exclusively on the original one, i.e., the ZRP in one dimension and
with periodic boundary. Updates of the particle configuration occur at each discrete time step,
and two typical update rules, the parallel and random sequential update rules, are considered.
These rules are defined as follows. Parallel update rule: at each time step, simultaneously
at every site, one particle attempts to hop to the next site with its hop probability. Random
sequential update rule: at each time step, a site is selected at random and then one particle at
the site attempts to hop to the next site with its hop probability.

It is notable that the ZRP in one dimension can be mapped onto an exclusion process, i.e.,
a many-particle system on a periodic lattice whose sites contain a single particle or none [3].
Hereafter we call particles in the exclusion process vehicle to prevent confusion. According
to this mapping, particles in the ZRP are regarded as the distance between adjacent vehicles
in the exclusion process, i.e., the number of particles at site i indicates the number of blank
sites in front of vehicle i following vehicle i − 1; accordingly, for a particle to hop to the next
site in the ZRP is for a vehicle to hop to the next site in the exclusion process. This exclusion
process adequately simulates a traffic flow in which vehicles hop forward each with its own
probability depending on the distance to the front vehicle. Note that the number of sites in
the exclusion process is equal to the sum of sites and particles in the ZRP and meanwhile the
number of vehicles is equal to that of sites in the ZRP.

2. Nonequilibrium steady state and partition function

In this section, following [3], we precisely define the nonequilibrium steady state of the ZRP
and then formulate the partition function in that steady state. As well as equilibrium statistical
mechanics, expectation values of physical quantities should be given by using that partition
function.

2.1. Nonequilibrium steady state

Let P({nm}) be the probability of finding the system in a configuration {nm} =
{n1, n2, . . . , nM}, where nm denotes the number of particles at the mth site. The transition
probability from {n′

m} to {nm}, denoted by T ({nm}|{n′
m}), is expressed by the hop probability

function u(n) respectively according to the update rule, i.e., parallel and random sequential
update rules. Note that it is always true that u(0) = 0.

We first consider the parallel update rule. The transition probability for the update rule is
given by

T ({nm}|{n′
m}) =

1∑
ν1=0

· · ·
1∑

νM=0

[
M∏

m=1

u(n′
m)δ(nm − n′

m + νm − νm−1)

]
, (1)

where, at each site, νm (= 0, 1) particle hops to the next site with probability u(nm), and δ(n) is
the Kronecker delta that returns unity if n = 0 and zero otherwise. The balance of probability
currents at each configuration {nm} is represented by the following equation:∑

{n′
m}

[T ({nm}|{n′
m})P ({n′

m}) − T ({n′
m}|{nm})P ({nm})] = 0. (2)

Then, we call a solution of (2) the nonequilibrium steady-state probability (or the steady-
state probability, simply). The steady-state probability P({nm}) is given as a product of the
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single-site weights f (n):

P({nm}) = 1

ZM,N

M∏
m=1

f (nm) (n1 + n2 + · · · + nM = N), (3)

where a normalization ZM,N , the sum of the products over all configurations, is referred to as
the partition function for the ZRP in the nonequilibrium steady state. One can directly confirm
that (3) is a solution of (2); meanwhile the single-site weight is found to be

f (n) =


1 − u(1) (n = 0)

1 − u(1)

1 − u(n)

n∏
j=1

1 − u(j)

u(j)
(n � 1).

(4)

Next, we consider the random sequential update rule. In this case, one can describe the
steady-state condition in a simple form:

M∑
m=1

[u(nm−1 + 1)P (. . . , nm−1 + 1, nm − 1, . . .) − u(nm)P ({nm})] θ(nm), (5)

where θ(nm) is the Heaviside function, which emphasizes that the site m must be occupied for
there to be associated hops out of and into the configuration {nm}. As well as in the case of
the parallel update rule, the steady-state probability P({nm}) is given in the product form (3),
where the single-site weight for the random sequential update rule is

f (n) =


1 (n = 0)
n∏

j=1

1

u(j)
(n � 1).

(6)

(See [3] and [10] for details.)

2.2. Partition function

It should be noted that f (n) is not identical to the probability that a given site (e.g. site 1)
contains n particles. Let the probability be denoted by p(n), and it is obtained from the
probability distribution of configurations P({nm}) as

p(n) =
∑

n2+n3+···+nM=N−n

P ({n, n2, . . . , nM}) = f (n)
ZM−1,N−n

ZM,N

. (7)

The sum of p(n) over n is unity by definition, and we thereby obtain the recursion formula for
the partition functions:

ZM,N =
N∑

n=0

f (n)ZM−1,N−n (M > 1, N � 0), (8)

Z1,k = f (k) (k � 1). (9)

Considering the generating functions, f̂ (ζ ) := ∑∞
n=0 f (n)ζ n and ẐM(ζ ) := ∑∞

n=0 ZM,nζ
n,

we have a recursion with respect only to M: ẐM(ζ ) = f̂ (ζ )ẐM−1(ζ ). Consequently, we find
the fundamental relation between the two generating functions:

ẐM(ζ ) = (f̂ (ζ ))M. (10)

Thus, the partition function ZM,N is obtained from the single-site weight f (n) via their
generating functions. From the statistical mechanical viewpoint, ẐM(ζ ) is appropriate for us
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to call the grand-canonical partition function, where we should think of ζ as the fugacity
[2, 3].

Using p(n) given in (3), the average velocity of vehicles in the steady state is defined by

vM,N =
N∑

n=0

u(n)p(n). (11)

In the case of parallel update rule, we find that the average velocity is expressed by the partition
function as

vM,N = −
∑N−1

n=0 (−1)nZM,n

(−1)NZM,N

. (12)

In the case of random sequential update rule, we also find

vM,N = ZM,N−1

ZM,N

. (13)

(See [12] for details.)

3. Exact solution

In this section, we exactly compute the partition function and then the expectation value of the
average velocity. These computations are fully done by using the formulae for the Lauricella
hypergeometric function. The definition and formulae used are relegated to the appendix.

3.1. Parallel update rule

We start with the hop probability function u(n) given as
u(0) = 0,

0 < u(n) < 1 (1 � ∀n � K),

u(n) = 1 (∀n � K + 1),

(14)

where K (�1) is a constant integer. This is not a strong restriction, for one may take K to be
as large as necessary. As far as traffic-flow models are concerned, it is quite natural to choose
this kind of hop probability function.

Substitution of (14) into (4) yields f (n) = 0 for n > K +1, and we accordingly transform
f̂ (ζ ) into a convenient form, i.e.,

f̂ (ζ ) =
K+1∑
n=0

f (n)ζ n = (1 − u(1)) (1 + ζ )

K∑
n=0

ζ n

n∏
j=1

1 − u(j)

u(j)

 , (15)

where we define
∏n

j=1 aj = 1 if n = 0. For further computations, we formally factor the most
right-hand side of (15):

f̂ (ζ ) = f (0)(1 + ζ )

K∏
i=1

(1 + xiζ ). (16)

Then, comparing (15) with (16), we note the relation between x1, x2, . . . , xK and u(1),

u(2), . . . , u(K), namely

e0(x) = 1, en(x) =
n∏

j=1

1 − u(j)

u(j)
(n = 1, 2, . . . , K), (17)
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where en(x) is the nth elementary symmetric function of K variables, x = (x1, . . . , xK).
(Note that the elementary symmetric functions are defined by its generating function:∏

i (1 + xiζ ) = ∑
n en(x)ζ n and specially e0(x) = 1.)

Accordingly, substitution of (16) into (10) yields

ẐM(ζ ) = f (0)M(1 + ζ )M
K∏

i=1

(1 + xiζ )M. (18)

Compare (18) with (A.2), the generating function for the Lauricella hypergeometric function
FD, and one finds an expression for the partition function in the nonequilibrium steady state:
if N � KM + M then

ZM,N = f (0)M(−1)N
(−M)N

(1)N
FD(−N,

K︷ ︸︸ ︷
−M, . . . ,−M,M − N + 1; x), (19)

and otherwise ZM,N = 0. (See the appendix for the definition of the notation.) As seen
below, this expression using the Lauricella hypergeometric function is quite useful for the
exact computation of expectation values.

In the case that N > KM + M , the average velocity in the steady state takes the value of
unity, since all vehicles take more than K-site distance from the front vehicle (or all sites in
the corresponding ZRP contain more than K particles). If N � KM + M , by substituting of
(19) into (12) we have an expression for the average velocity. Using a recursion formula for
the Lauricella hypergeometric function with respect to parameters (appendix A.2),

αFD(α + 1, β, γ + 1; x) − γFD(α, β, γ ; x) = (α − γ )FD(α, β, γ + 1; x), (20)

the sum in the numerator in (12) is carried out first:
N−1∑
n=0

(−M)n

(1)n
FD(−n,−M, . . . ,−M,M − n + 1; x)

= (1 − M)N−1

(1)N−1
FD(1 − N,−M, . . . ,−M,M − N + 1; x). (21)

Accordingly, the average velocity of vehicles for arbitrary numbers of sites and vehicles is
given as

vM,N = N

M

FD(1 − N,−M, . . . ,−M,M − N + 1; x)

FD(−N,−M, . . . ,−M,M − N + 1; x)
. (22)

We remark that (22) is valid for arbitrary numbers of M and N.
Then, we expand (22) in lattice size L = M +N with a fixed density of vehicles ρ = M/L.

Our strategy to take the thermodynamic limit is to eliminate the hypergeometric function from
(22). The Lauricella hypergeometric differential equation that Y = FD(α, β, γ ; x) satisfies is
defined by

[(γ − 1 + δ)δi − xi(α + δ)(βi + δi)] Y = 0 (i = 1, 2, . . . , K), (23)

where δ = ∑
i δi and δi = xi∂/∂xi . Using a differentiation formula (A.11), we have

FD(1 − N,−M, . . . ,−M,M − N + 1; x) = y − 1

N
δy, (24)

where y = FD(−N,−M, . . . ,−M,M − N + 1; x), the denominator in (22), and then
substitution of this into (22) yields

δy = N

h
(h − vM,N)y

(
h = N

M

)
. (25)
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Meanwhile, we consider the hypergeometric differential equation for y (where α = −N, βi =
−M and γ = M − N + 1) and find

δiy = N

h

vM,Nxi + h
N

(1 − xi)δivM,N

1 − vM,N + vM,Nxi

y (i = 1, 2, . . . , K). (26)

Since
∑

i δiy = δy, equating the sum of the right-hand side of (26) with that of (25) we
successfully eliminate y:

h − vM,N =
K∑

i=1

vM,Nxi + h
N

(1 − xi)δivM,N

1 − vM,N + vM,Nxi

. (27)

Expand the average velocity as vM,N = v0 + v1L
−1 + v2L

−2 + · · · , and substitution of this into
(26) yields a series of equations for v0, v1, v2, . . . . Consequently, as N tends to infinity, we
have

h − v =
K∑

i=1

vxi

1 − v + vxi

, (28)

where v (= v0) is the average velocity in the thermodynamic limit. Solving the series of
equations for v1, v2, . . . in turn, one can obtain the higher order correction terms as functions
of v. The computations are straightforward, but however the expressions of those terms are
too long to be included.

In [10], they already obtained the same result as (28) working in the grand-canonical
ensemble where the fluctuation of the particle number N is allowed. Actually, (28) is consistent
with their result,

〈N〉 = w
∂

∂w
log ẐM(w), (29)

where 〈N〉 means the expectation value of the particle number in the grand-canonical ensemble.
Since the right-hand side of (28) is in a symmetric form with respect to x1, . . . , xK , one can
express it using its elementary symmetric functions. Recall

∏
i (1 + xiζ ) = ∑

n en(x)ζ n, and
one finds the identity

K∑
i=1

wxi

1 + wxi

=
∑K

r=1 rer(x)wr∑K
r=0 er(x)wr

. (30)

The left-hand side of (30) is equivalent to the right-hand side of (28) if one lets w = v/(1−v),
and thus we find that (28) is equivalent to (29).

We note that using (29) one has the fundamental diagram in a parametric representation:
flux Q(v) = ρ(v)v and density ρ(v) = 1/(1 + h), where v (0 � v � 1) is the parameter.
As an example, we illustrate a fundamental diagram choosing a hop probability function that
approximately describes motion of vehicles in traffic flow, i.e.,

u(n) = tanh(n − c) + tanh c

1 + tanh c
, (31)

where we let c = 3/2. Note that the hop probability function can be estimated from real
traffic data, and (31) is often chosen for traffic-flow models [11, 13]. Figure 1 shows the
exact fundamental diagram illustrated by using (29) with K = 50 and the simulation data in
addition. They show complete agreement.
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Figure 1. A fundamental diagram of the exclusion process corresponding to the zero-range
process with the parallel update rule. Grey line shows the exact solution given in the parametric
representation and black points are simulation data. Numerical simulation is done with site
L = 1000. These are in good agreement.

3.2. Random sequential update rule

In the same way as in the case of the parallel update rule, we obtain the fundamental diagram
for the ZRP with the random sequential update rule.

The single-site weight is given in (6), and then the generating function for these weights
is given as

f̂ (ζ ) =
∞∑

n=0

ζ n

n∏
j=1

1

u(j)

 , (32)

where u(n) is given in (14). Then, we can factor (32) into f̂ (ζ ) = (1 − ζ )−1 ∏K
i=1(1 − xiζ )

and express the partition function by the Lauricella hypergeometric function:

ZM,N = (M)N

(1)N
FD(−N,

K︷ ︸︸ ︷
−M, . . . ,−M,−M − N + 1; x), (33)

where the independent variables x = (x1, x2, . . . , xK) satisfy

e0(x) = 1, en(x) = (−1)n(1 − u(n))

n∏
j=1

1

u(j)
(n = 1, 2, . . . , K). (34)

From (13) and (33), the average velocity for the finite numbers, M and N, is expressed by the
Lauricella hypergeometric function:

vM,N = N

M + N − 1

FD(−N + 1,−M, . . . ,−M,−M − N + 2; x)

FD(−N,−M, . . . ,−M,−M − N + 1; x)
. (35)

Thus, applying the formulae for the hypergeometric functions we find

h = N

M
=

(
1 − 1

M

)
vM,N

1 − vM,N

−
K∑

i=1

xivM,N + 1−xi

(1−vM,N )M
δivM,N

1 − xivM,N

. (36)

As well as the parallel update case, we can expand vM,N as a series v0 + v1L
−1 + v2L

−2 + · · · .
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Figure 2. A fundamental diagram of the exclusion process corresponding to the zero-range process
with the random sequential update rule. (See figure 1 for comparison.) Grey line shows the exact
solution given in the parametric representation, and black points are simulation data. Numerical
simulation is done with site L = 1000. These are in good agreement.

Especially in the thermodynamic limit, we recover the result given in[6, 3]

〈N〉 = v
∂

∂v
log Ẑ(v), (37)

which was obtained within the grand-canonical ensemble.
In contrast with the parallel update case, if K tends to infinity, we need to determine the

range of parameter v. For this purpose, we impose a simple condition on the hop function,
i.e.,

lim
n→∞ u(n) = u∞ (0 < u∞ � 1), (38)

which surely allows us to determine the parameter range. Then, the range of values of v

becomes 0 � v < u∞. It depends on the asymptotic behaviour of u(n) whether f̂ (v)

converges or not at v = u∞. The convergence of f̂ (v) is discussed in the context of
condensation occurring in the ZRP [3, 14, 15].

We choose a traffic-flow model with the hop probability function (31) and random
sequential update rule, and show the exact fundamental diagram and simulation result in
figure 2. These are in good agreement as well as in the case of the parallel update rule.

We consider a simple hop probability function which allows us to provide a direct formula
of fundamental diagram instead of the parametric representation, i.e.,

u(1) = λ, u(n) = p (n � 2). (39)

Substitution of (39) into (37) via (32) yields

h = p2v

(p − v)(λp + (p − λ)v)
. (40)

Accordingly, eliminating v we obtain the fundamental diagram explicitly described by

Q = pρ

[
1 − 1 − √

1 − 4(1 − q)ρ(1 − ρ)

2(1 − q)(1 − ρ)

]
where q = λ

p
. (41)

One can also figure out an explicit formula for this model in the case of the parallel update
rule; however, one has to solve a cubic equation.

If we take the limit as λ → p (i.e., q → 1) in (41), we recover the fundamental diagram
of the ASEP, Q = pρ(1 − ρ), which is a well-known solution [16]. If we let p = 1 (q = λ,
accordingly), then we recover another exact solution given in [17], where they obtained the
same result by using the matrix-product ansatz.
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4. Summary and remark

In this paper, we provide an exact solution of the zero-range process: we have the partition
function for the general case, which is expressed by the Lauricella hypergeometric function,
and which allows us to make further computations. Although the solution obtained is rather
formal, that is enough for us to compute expectation values of macroscopic quantities. In
particular, using the exact partition function we obtain the average velocity of vehicles for
arbitrary numbers of sites and particles. Moreover, expanding the average velocity in terms
of the site number, we obtain the fundamental diagram as the leading term of the expansion.
One can also figure out the correction terms through a long computation.

Due to the fact that the steady state of the ZRP has a factorized form, one can
perform within equilibrium statistical mechanics while dealing with the macroscopic quantities
averaged over all the lattice. In this regard, one may take ZM,N as the canonical partition
function in which the particle number is conserved. As a result, we compute the expectation
value of the average velocity within the canonical ensemble. In general, statistical treatment
in the canonical ensemble is more difficult than that in the grand-canonical ensemble. Both
results in these ensembles are equivalent in the thermodynamic limit. An analytical approach
based on the grand-canonical ensemble was previously made to the ZRP with the random
sequential update rule in [6] and to the ZRP with the parallel update rule in [10]. Recently,
canonical analysis of the condensation is also done [14, 15]. In this regard, it will be interesting
to exactly compute the probability p(n) that a single site is to contain n particles in the steady
state.

Recently, as a traffic-flow model, we introduce the stochastic optimal velocity (SOV)
model [11, 18] in the form of combining two exactly solvable models, i.e., the asymmetric
simple exclusion process (ASEP) [16] appearing as a special case of the ZRP and the ZRP
itself; however, it does not seem to us that the model has an exact solution in the general case.
In numerical simulations, we find that the SOV model has an intriguing and complex phase
transition in the fundamental diagram, and our future goal is to analyse in detail the phase
transition observed, e.g., by using a theoretical method for exactly solvable models.
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Appendix A. The Lauricella hypergeometric function

There are four types of the Lauricella hypergeometric function, being denoted by FA, FB, FC

and FD. Each of them has a series representation, an integral representation and a differential
equation it satisfies. Since only FD appears in this paper, we confine our attention to FD. (See
[19] for details.)

First, we define the Lauricella hypergeometric function FD with K arguments by

FD(α, β1, . . . , βK, γ ; x1, . . . , xK) =
∑
m∈IK

(α)|m|(β)m

(γ )|m|(1)m
xm, (A.1)

where α, β1, . . . , βK and γ are all complex parameters, (a)n = a(a + 1) · · · (a + n − 1) is the
Pochhammer symbol, and notations on the right-hand side are defined as follows: IK = {m =
(m1, . . . , mK);mi ∈ Z�0 (i = 1, 2, . . . , K)}, then, for m ∈ IK, |m| = m1 + · · · + mK,



7136 M Kanai

(β)m = (β1)m1(β2)m2 · · · (βK)mK
, (1)m = (1)m1(1)m2 · · · (1)mK

and xm = x1
m1 · · · xK

mK .
We also use the following notations for simplicity: β = (β1, β2, . . . , βK) and x =
(x1, x2, . . . , xK).

The hypergeometric differential equation for FD(α, β, γ ; x) is given in (23). We omit the
integral representation because it is not used in the present work.

A.1. Generating function

We present the generating function for FD:

(1 − ζ )κ
K∏

i=1

(1 − xiζ )−βi =
∞∑

n=0

(−κ)n

(1)n
FD(−n, β, κ − n + 1; x)ζ n. (A.2)

Here, we give a proof of (A.2) by mathematical induction. One should note the relations

(1 − z)a =
∞∑

n=0

(−a)n

(1)n
zn, (A.3)

and

(a)l−m = a(a + 1) · · · (a + l − 1)

(a + l − m) · · · (a + l − 1)
= (−1)m(a)l

(1 − a − l)m
. (A.4)

(i) If K = 1, then one has

(1 − ζ )κ(1 − x1ζ )−β1 =
∞∑

m1=0

∞∑
k=0

(−κ)k(β1)m

(1)k(1)m1

x1
m1ζ k+m1

=
∞∑

m1=0

∞∑
n=m1

(−κ)n−m1(β1)m1

(1)n−m1(1)m1

x1
m1ζ n

=
∞∑

n=0

(−κ)n

(1)n
FD(−n, β1, κ − n + 1, x1)ζ

n. (A.5)

Thus, (A.2) holds if K = 1.
(ii) Assume that (A.2) holds if K = l − 1, and one accordingly has

(1 − ζ )κ
l∏

i=1

(1 − xiζ )−βi = (1 − xlζ )−βl

∞∑
n=0

(−κ)n

(1)n
FD(−n, β ′, κ − n + 1; x ′)ζ n

=
∞∑

k=0

∞∑
n=0

(−κ)n

(1)n
ζ k+n

∑
m∈Il−1

(−n)|m|(β ′)m(βl)k(x
′)mxl

k

(κ − n + 1)|m|(1)m(1)k

=
∞∑

n=0

(−κ)n

(1)n
ζ n

∑
(m,k)∈Il

(−n)|m|+k(β
′)m(βl)k(x

′)mxl
k

(κ − n + 1)|m|+k(1)m(1)k
, (A.6)

where x ′ = (x1, . . . , xl−1), β
′ = (β1, . . . , βl−1) and Ik = {m = (m1, . . . , mk);mi ∈

Z�0 (i = 1, 2, . . . , k)}.
Thus, (A.2) holds also when K = l. Therefore, we may conclude that (A.2) holds for any

natural number K.
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A.2. Recursion formula

We provide a recursion with respect to the parameters, α and γ , for FD:

αFD(α + 1, β, γ + 1; x) = γFD(α, β, γ ; x) + (α − γ )FD(α, β, γ + 1; x). (A.7)

One should note simple formulae for the Pochhammer symbol,

(a + 1)n − (a)n = n

a
(a)n and

1

(a)n
− 1

(a + 1)n
= n

(a)n+1
. (A.8)

From (A.1) and the two formulae above, one respectively has

FD(α + 1, β, γ ; x) − FD(α, β, γ ; x) =
∑
m∈I

|m|
α

(α)|m|(β)m

(γ )|m|(1)m
xm, (A.9)

and

FD(α, β, γ ; x) − FD(α, β, γ + 1; x) =
∑
m∈I

|m|
γ

(α)|m|(β)m

(γ + 1)|m|(1)m
xm. (A.10)

Then, we can construct (A.7) from (A.9) and (A.10).

A.3. Differentiation formula

Since the Lauricella hypergeometric function is a multivariable function, when taking the
derivative one needs to deal with partial differentiation: δi = xi∂/∂xi and δ = ∑

i δi . In the
present work, we specially use the following formulae:

δFD(α, β, γ ; x) = α (FD(α + 1, β, γ ; x) − FD(α, β, γ ; x))

= (γ − 1) (FD(α, β, γ − 1; x) − FD(α, β, γ ; x)) . (A.11)

Note that δixi
mi = mixi

mi , and from (A.8) one finds

δFD(α, β, γ ; x) =
∑
m∈I

(α)|m|(β)m

(γ )|m|(1)m
|m|xm

=
∑
m∈I

α((α + 1)|m| − (α)|m|)(β)m

(γ )|m|(1)m
xm

=
∑
m∈I

(
γ − 1

(γ − 1)|m|
− γ − 1

(γ )|m|

)
(α)|m|(β)m

(1)m
xm. (A.12)

Thus, (A.11) is proven.
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